Examination of Platelet Adhesion and Activation on Gamma-sterilized Medical Polymers

Introduction

The blood compatibility of polymers used for medical devices which facilitate the movement or storage of blood is critical, particularly in devices whose applications where device-contacting blood will be re-introduced into a patient (dialyzer housings, storage vessels, IV components, etc.). Standard biocompatibility testing conducted in accordance with the ISO 10993 series of standards for these materials includes various tests for hemocompatibility\(^1\), including platelet interactions, but direct microscopic examination of platelet adhesion and activation is less common. This white paper presents the results of a scanning electron microscopic (SEM) examination of human platelet adhesion on polymeric materials, which shows that CYROLITE\(^\text{®}\) materials may be less likely to aggregate and activate platelets than some other commonly-used blood-contacting materials.

Background

Platelet activation after adhesion to blood contacting materials occurs with various steps, starting with the initial attachment of cells, the spreading of the cell, and the final release of granule contents\(^2\). Although as many as 5 distinct forms, corresponding with increasing degrees of platelet activation, have been described\(^3\), this paper will focus on the three morphologies. The first morphology, the non-activated state (Figure 1), describes platelets in which the platelet retains its disk-like or round-like state. The second morphology, occurring subsequently is the partially-activated (dendritic) state (Figure 2), where one or more pseudopodia have become visible. The final morphology is the fully activated (spread) state, where the pseudopodia have largely disappeared and formed a characteristic fried egg shape (Figure 3).

Sample description

Samples of 6 polymeric materials (CYROLITE\(^\text{®}\) Med 2, CYROLITE G-20 HIFLO\(^\text{®}\), co-polyester, Impact modified SMMA, transparent ABS, and medical grade polycarbonate) were molded into 4.00” diameter x 0.062” plaques by Lansen Mold Company of Berkshire, MA. Samples plaques were then sent to Steris Isomedix Services of Spartanburg, SC, for gamma irradiation at 50-60kGy. Once received from sterilization, polymer samples of approximately 0.2”x0.4” dimension were cut from the sterilized plaques for use as microscopic samples.
Blood exposure and sample preparation

Prior to microscopic examination, samples were exposed to human blood and prepared for microscopic examination using established procedures. Unspun single-donor citrated human whole blood (Biological Specialty Corporation, Colmar, PA) was supplied along with the polymer samples to the North Carolina State University Center for Electron Microscopy (Raleigh, NC). Blood was warmed to 35°C in a water bath, and samples submerged in blood for a period of 5 minutes. After exposure, samples were progressively washed and cells fixated with 4% paraformaldehyde/1%glutaraldehyde.

After a final, wash cycle using citrated saline, the samples were dehydrated in graded ethanol, and then critically point dried in liquid CO₂. Samples were sputter coated with 25Å gold-palladium, and stored in a vacuum desiccator until viewing.

Sample Examination: Platelet enumeration and morphology

Sample images were generated using a 10kV JEOL JSM-5900LV (JEOL U.S.A. Peabody, MA) SEM at 1000x magnification. Each polymer sample was photographed in five random areas on the mold-formed (smooth) side of the sample, representative of the fluid-flow surface in device components. Images were digitally acquired as 1280x960 TIFF images.

Sample images were examined and platelets were enumerated by categorizing as non-activated, partially-activated, and fully-activated depending upon their morphological state. Individual platelet counts for the five regions of each sample were combined and averaged over the image area to yield platelet counts per square millimeter.

Results

Figure 3 presents the observed platelet adhesion and activation by material type and platelet morphology.
Figure 4 presents the observed quantity of fully-activated platelets by material type

![Figure 4: Fully-activated platelets by material](image)

Discussion

The CYROLITE® Med 2 material showed the lowest number of adhered platelets among the six tested materials, with the ABS and CYROLITE® G-20 HIFLO® having the second and third lowest, respectively. The polycarbonate, co-polyester, and impact modified SMMA had the three highest numbers of adhered platelets.

Adhesion of platelets to a biomaterial is dependent upon many factors, including surface wettability, plasma protein absorption to the biomaterial surface, and the affinity of the surface to bind adhesion inhibiting proteins. This initial data suggests that CYROLITE® Med 2 and G-20 HIFLO® materials may have qualities that reduce the adhesion and/or activation of human blood platelets when compared to certain other grades of polymers. Further research to verify results and determine mechanisms for this behavior, should be pursued.

References

This information and all technical and other advice are based on Evonik present knowledge and experience. However, Evonik assumes no liability for such information or advice, including the extent to which such information or advice may relate to third party intellectual property rights. Evonik reserves the right to make any changes to information or advice at any time, without prior or subsequent notice. EVONIK DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, WHETHER EXPRESS OR IMPLIED, AND SHALL HAVE NO LIABILITY FOR, MERCHANTABILITY OF THE PRODUCT OR ITS FITNESS FOR A PARTICULAR PURPOSE (EVEN IF EVONIK IS AWARE OF SUCH PURPOSE), OR OTHERWISE. EVONIK SHALL NOT BE RESPONSIBLE FOR CONSEQUENTIAL, INDIRECT OR INCIDENTAL DAMAGES (INCLUDING LOSS OF PROFITS) OF ANY KIND. It is the customer’s sole responsibility to arrange for inspection and testing of all products by qualified experts. Reference to trade names used by other companies is neither a recommendation nor an endorsement of the corresponding product, and does not imply that similar products could not be used.

ACRYLITE®, ACRYMID®, CYROLITE®, CYREX®, CYRO®, Vu-Stat® and XT® polymer are registered trademarks of Evonik Cyro LLC. Evonik Industries is a worldwide manufacturer of PMMA products sold under the ACRYLITE® trademark in the Americas and under the PLEXIGLAS® trademark on the European, Asian, African and Australian continents. ® = registered trademark.

Evonik Cyro LLC 299 Jefferson Road, Parsippany, NJ 07054-0677 USA Phone: 800-225-0172; Email: cyro.polymer@evonik.com; Website: http://www.acrylite-polymers.com Technical Support: visit the TechKnowlogy Center at cyro.custhelp.com